electron and hole current density vectors; A, coefficient of asymmetry in narrowing; AVg,
total narrowing of the forbidden bandwidth; vy,, v,, degree of electron and hold degeneration;
¢ps temperature potential; ¢,, ¢., electron and hole Fermi quasilevels; Nios Ny effective
proper electron and hole concentPations equal to n;y, exp (AAVgjerp) and nyy, exp [(1 — A)-
AVg/wT], respectively; R, excess of the recombination velocity above the gengration velocity;
g, dielectric permittivity of the materialj; Bi,j’ value of the variable B at the node of the
spatial discretization mesh with the subscripts i, j; !Gw‘imax, maximal value of {|6¢i jl} in
the first Newton iteration; Vi, Vg, Vi, V., ohmic contact potentials of the injector, émitter,
base, and collector, respectively; anB Nit’ number of complete iterations of the method.
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HEAT AND MASS TRANSFER IN SKIN FORMATION

N. I. Nikitenko and Yu. N. Kol'chik UDC 536.24

A mathematical model of the heat conduction and diffusion on heating an oxidizing
metal is presented, together with a numerical method of calculation,

On heating ingots and semifinished articles in furmaces, thelr outer surface is oxidized,
which leads to significant loss of material. The skin layer formed on oxidation has relative-
ly low heat conduction and a high specific volume, and consequently this layer appears as a
heat-insulating coating [1-3], which must be taken into account in optimizing the heating of
metallic bodies.

It has been established that, in the skin layer, diffusion of metal to the outer surface
occurs, and it is mainly oxidized at this surface [4]. The concentration distribution of the
components in the oxide has apparently not previously been considered. Skin formation on
heating a body of arbitrary form may be described mathematically as.follows. Suppose that W,
and W, are regions of space (x, y, 2) occupied by the metal and its skin; T, is the boundary
between the metal and the skin; I', is the external boundary of the skin; £, and t, are temp-
erature functions for the metal and the skin; C is the concentration of unoxidized metal in
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the skin, The regions W, and W, in the space (%, v, z, T), Where 0 < 7 < 1 rs correspond to
cylinders Ry = {Wy x [0, 1,,.]} and R; = {Wa x [0, Top)} with surfaces F, = ?F, x [0, Top)} and
F, = {Tr', x [0, Tcr]}. A heat conduction equation holds for the metal and skin

cipy - = div (ygradty) + T, (5, 9. 2, DER, j=1, 2. w

Here c; and \; are the specific heat and thermal conductivity; p, is the density; I, is the
power of the heat sources. The concentration C of metal in the ikin is described b; the dif-
fusion equation

aC .
"EF:mWD$MQ+HWW&L%ﬂE&» (2)
where Iy is the density function of mass sinks of unoxidized metal in the skin.
For the initial instant (r = 0), values of the functions are specified

ti(x, ¥, 2, 0)=1(x, y, 2), C{x, y, 2, 0)=Cy(x, ¥, 2),

3
Fi(x, y, 2, 0)= Fu (%, 9, 2)- (3
At the metal—skin boundary F,
tl(Pl)th(Pl)ZT» (4)
A oty (Py) o Oty (Py) _ HD GC(Pl), (5)
dv av 0y dv
U(Px): _Q_M, (6)
01 dv
C(Py) = Cg(T). (7

Here P, is a point belonging to the surface F,; H is the specific heat of phase transition of
the metal in the skin; v is the component of the velocity vector of a boundary point P; along
the normal v; CS is a specified function of the temperature.

At the external boundary, the following conditions hold

0C (P,
g D8P it Pty 1y (P + HaD 2CE. (8)
oy dv
C(Ps) W -
C(Pz) = 0; v, (pz) = _D___@ —“(P“) L, Py Fs. (9
P2 v by

Here o = 5.67¢10~% W/meK"“; Hy is the heat of chemical transformation of 1 kg of metal in the
skin; v, is the component of the velocity vector of boundary point P, along the normal v. The
condition in Eq. (9) holds when the rate of chemical reaction of the metal with atmospheric
oxygen at the external boundary of the skin is sufficiently large. Otherwise, Eq. (9) may be
replaced by a condition of the form

where B, and B, are constants characterizing the rate of this chemical reaction.

In the skin layer, as well as diffusion of the metal to the external surface, there may
be diffusion of oxygen to the metal-skin interface. In this case, the concentration function
of oxygen at internal points of the skin satisfies a diffusion equation analogous to Eq. (2).
On account of chemical reaction of the metal and oxygen inside the skin, the source terms HM
in Eq. (2) and My in the diffusion equation for oxygen and also in heat-conduction Eq. (1)
for the skin layer are nonzero, They are functions of the metal and oxygen concentrations
and also of the temperature.

There has been insufficient study of the transition of metal atoms to the skin. Accord-
ing to experimental data [4], the velocity of motion of the metal boundary on account of ox-
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idation is inversely proportional to the thickness of the skin layer L and is often written
in the form [1, 5-7]

U:—f’-—exp(——[;—). (10)

The velocity v is relatively small and, taking into account. Eq. (9), may be expressed
approximately in terms of the concentration at the metal—skin boundary

_ D ocpy D CP)—-CP) D CPY
0y dx 01 L 0y L

11
It follows from Egs. (10) and (1l) that
B ﬁ\\
C(Py) = —-—1, 12
Py) DGXP(‘ ) (12)

i.e., the concentration is a function of the temperature. In accordance with this, the ex-
ponential temperature dependence of the concentration C(P,;) may be explained on the basis of
the Clapeyrom—Clausius equation or the Arrhenius law.

Investigating skin formation on the basis of the given mathematical model entails solving
the heat- and mass-transfer problem in a system with moving boundaries [8]. The peculiarity
of this problem is the significant change in density of the material in the chemical trans-
formation of the metal in the skin. In [7], an algorithm was proposed for numerical solution
of the problem of skin formation on a plane plate, disregarding the density change on trans-
formation of metal in the skin and the accompanying diffusional process, on the basis of an
implicit scheme with a relatively low order of approximation 0(Ax + At + AT/Ax).

Without any simplifving assumptions, Eqs. (1)-(11) may be solved on the basis of a dif-
ference method with explicit separation of the phase boundaries [9] and the use of a three-
layer difference scheme [10]. This difference scheme is distinguished by simplicity, which is
characteristic of explicit difference schemes, and is also no less economical than implicit
schemes for the solution of systems of parabolic equations realized by matrix fitting.

An algorithm for calculating heat and mass transfer in skin formation for a plane plate
of thickness 2X is outlined below. In connection with the significant difference in density
of th% metal and skin, the approximate values tQ of the temperature ti(xj, Ty) in the metal
and t_ and Cm of the skin temperature tz(X , T..) and concentration C(x » Tn) of the metal in
the SEln layer are determined in autonomous dl%ference schemes

T, = nAr, nzzd,l,. , At=const; x; =i{Ax,, i=0,1, ..., I"—1,
x7 = X1, X7 — x_1 << Axy, Ax, = const;

X = MAXs, m=0, 1, ..., M*—1, x3y = X5, Ax, = const.

Here the integers I® and M" are determined from the conditions
0<TXT—(I"— 1) Axy < A%y, 0<< X3 —(M"— 1) Ax, < Xy

The difference scheme for solving this problem of skin formation takes the form

£ =t (%3); tm = tao (Xm); Cn = Co (¥m)i X1==X; X3 ="K MO =0; (13)
6TX7 = szcg, stg = i DﬁxC;\Iﬁ ‘ (14)
Pally :
8ol (14 6,) — 8877 0, = 8e(MBuf? ), i=0, 1, ..., I"—2; (15)
CiPy
8l = L 8, (81, i= 1" 1 Qe
€1
(1 -+ 00} Bty — B0l = —— S, (habfl), m=0, 1, ..., M?— 2 (17

CoPa
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Sullh = S (a8, m= M 1w X3S 2Av,; (18)

Cafry
(1 + 03) 61:C;;1 —‘G ) C:;{—l == 6 x (D6 C,r,il) ni = 1, 2’ RN Ar{” j— 2; (19)
8:Cr = 8y (DSCr ')y = M"— 1 (20)
Crz—x—l . PEXP( nﬁl l’ C/z+1 — (21)
7 1
14— G, M7 — MaBitith = HDS.Cr T (22)
Radutht | = {0 [te -+ (M) (te + 1) + 0} (fe — 51 H,DS,Co, (23)
n+-1
i I'" when —I"+1>0,
1 X1
[* — 1 when )—“———1"+ 1<0
Axy
n+1
| M"when — M4+ 1>0,
M = A (24)
| M”41 when X Mr1<0
' Ax,
-1
gl g _(t’rizl+1 gt X537 —mAx, when 11 — Mn+1= Mrg1,

X5 —(m— 1) Ax,

Here the initial values of the functions t;o¢, taes, Co, X, Xo and also the physical character-
istics of the bodies p;, P2, €y, Cz2, A1, A2, M1, MUz, B, B, H, Hz, 0, €, D are assumed to be
specified: Sj >0, =1, 2, 3;

1 I A n
8,Co = CL—A—Q—L when X, > Ax,, 8,Cq = M when X, << Ax,;
xg 2

1 1A
8,Ch = — Cu _«HCM”' when X, > Ax,,
Xo—(M"— 1) Ax,

Cu— Co

8,Ch= when X5 << A%y}

2

akl o on
617([3”: '(—P'T—'(P—7 ¢ = X17 X21 i mv Cm;
i (25)
1

6x(§6x@?)—2A (o + 8 (o — 1) — (G + G0 ¢ — 170,
V

1

1 e
8, (L8097 = ———— | (T4 ny Qi — @
( U ) Ax + Ax [(Cﬁ—l + c} ) Axv

(an—l (PIZ-H
— G+ & )—’———J—] L=t doy D5 j=iy miy=1, 2
Ax,
Ax, = Xt (I" — 1) Ax; when @; = {;_1;

Axy = X’21+1 — (M" — 1) Axy when@; = ty—1, Cau—i.

The stability conditions for Egs. (15), (17), and (19)
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AT<min{ijj(1+gej), 1+2623 , ':1, 2,
AL 9DAX]

allow any difference~schemaz step to be chosen by varying the parameter 6, as for implicit dif-
ference equations; however, since the approximation error of Eqs. (15), (17), and (19) is of
order 0(Ax? + At), it %i inexpedient to choose a step that is too large. The values of the

grid functions tg L, t ! for the initial instant (n = 0) are determined from the relation

@ — 07t =0y (¢ — %), @ =1, b Cmy 0O L. (26)

Note that 8¢ has a pronounced influence on the value of the grid function only for the first
few time steps. The solution of Eqs. (12)-(23) is undertaken as follows. Initially (n = Q),
the values of the grid functions t°, t°, c°, X7, X3 are specified, The initial temperature
t® of a metallic plate of thicknes3 X} fed into a furnace may be regarded as close. The skin
tﬁickness X§ is close to zero here. In comnection with this, without increasing the order of
error of the difference-scheme approximation, it may be supposed that X3 3 AxY, where y > 1
and M® = 1. The concentrations C§ and Cﬁ are determined from Eq. (21), and the temperature
ty from Eq. (23), underkthekcongitiﬁn tﬁat t§ = t2 Yhen n+ 1 = 0. Assume that the values
of the grid functioms tf, t_, C_, X;, Xz, k = 1, §a «e.y N have alreadx been fouEd, and their
values for the layer n + 1 %ustmbe determined. First, the values of X,+1 and x? ' are calcu-
lated from Eq. (14). Then, the grid function.triﬁ'l is found from Eq. (15) at the internal grid
points i = 1, 2, ..., IV — 2, which at times t_ are at a distance of no+less thaR the step Axj
from the boundary surfaces X;(j = 1, 2). Analggously, the functions t° ~ and C- ‘are found
from Egs. (17) and (19), when m = 1, 2, ..., M® — 2. The parameters eW(j =1, 9, 3) appearing
in difference Eqs. (15), (17), and (19) are then determined. First, for each of these equa-
tions, the maximum permissible (according to the stability condition) time step Aty when ej =

0 is calculated (for the case of an ordinary two-layer explicit difference equatioh)

Ar = Daer o Mdowy o A

%, 2hs 2D -
The final value of the time step At is determined in terms of the minimal ATﬁin of the stebs
ATj, j =1, 2,3 from the relation :

At = Atpin (1 4+ 26),

where € is the maximum value of 8; according to the condition that the error of the solution
be within acceptable limits, Thanks to the significant difference in linear dimensions of the
metal and the skin and also the monotonic dependence of the temperature on the coordinates and
time, the error of the solution varies insignificantly up to & = 50, which corresponds to a
100-fold increase in the time step in comparison with the usual explicit scheme. The final
values of ej are found from the condition

0, — 0 when Av<{AT;,
77 ] (At — AT)(2x ATy) when At > AT;,

which ensures stability of the solution of the corresponding difference equationm.

The temperatures at boundary and adjacent points are determingg asniollows. in the ini-
tial stage, when the skin thickness X3 < 20x,, the temperatures t?_,, t; ', and tﬁ ' are found
by simultaneous solution of Egs. (16), (22), and (23), under the assumption thg&Ithe tempera-
tuie changes linearly in the sk n layer. According to this hypothesis, when X; > Axz and
XTI 5> 2pxa, the temperature t® = at the grid points m = 1 and m = 2 is alculatgglfrom Eq.

(25). With a thickness of tgglskin layer X2+> 2AX3, the temperatures t?_i ind t. " are found

from Egs. (16) and (22) if I In. If IV 0 = 10 4 1, the temperature t? ' at the point
1 =1I"* — 1 is determined from Eq. (15), and Eq. (22) is used to find t¥+1.

The temperatures t;;* and tﬁ;fl when XE > 2Ax, are calculated from Eqs. (18) and (23).
If Mn+‘ ="+ 1l, the temperature at the newly formed point m = M" + 1 is determined by lin-

ear interpolation with respect to Eq. (25).

The calculation results for heating and skin formation with the following initial data
are shown in Figs. 1 and 2 [3]: X, = 29.1 W/meK; c: = 0.69 kJ/kgeK; p, = 7500 kg/m®; X, =
0.872 W/meK; ca = 1.047 kJ/kgeK; pz = 4000 kg/m®; X = 0.397 m; o = 5.67¢107° W/mek"; ¢ = 1;
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Fig. 1. Variation in quantities characterizing the heating of an ingot: 1) furnace
temperature; 2-4) temperatures at the external skin surface, at the metal-skin con-
tact boundary, and at the center of the ingot; 5) concentration C of unoxidized me-
tal in skin close to the metal—skin contact boundary; 6) thickness L of skin layer.
t, 10%°c; ¢, 1072 kg/m®; L, cmy T, h.

Fig. 2. Temperature distribution over the thickness of the ingot (1, 1') and the
skin (2, 2') and the concentration distribution of unoxidized metal over the skin
thickness (3, 3'); the continuous curves correspond to the end of heating 1 = 20,024
and the dashed curves to tv = 10 h.

= 0.38 m*/h; b = 1.8¢10* K; o = 0; D = 0,2¢10 ® m/sec. The dimensionless quantity x in
Fig. 2 determines the position of the point in the metal 1ayer (x = x/X;) or skin (x = (x —
X1)/(X2 — X1)). The temperature of the surrounding medium t,, K (furnace temperature) varies
over time T, h, according to the law

, :{1173+401 when T < 10,
¢ 1573 when T > 10.

The duration of heating Tor is defined as the minimum time for which the following.condition
is satisfied [3]

X

mint; (¥, Ter)> 1513, %(—gtl(x, Top)dx > 1523 K.
0
In [3], diffusion processes in skin formation were not considered and no account was
taken of the significant difference in velocities of the external and internal skin boundar-
ies. On taking account of these factors, the theoretical heating time of the semifinished
product is increased from 19.3 to 20.04 h. Reducing the diffusion coefficient D, while B
and 8 remain unchanged, leads to increase in the concentration C(X,).

Note, in conclusion, that the method of calculation here developed is relatively simple,
it requires little computer time for its realization, and it allows the influence of various
factors on the heating of ingots to be taken more accurately into account. This latter at-
tribute is necessary for optimization of the heating and elucidation of the laws of skin
formation.

NOTATION

X, V¥, 2, spatial coordinates; 1, time; A, ¢, p, thermal conductivity, specific heat,
density; t, temperature; II, HB’ density of heat and mass sources; D, diffusion coefficient:
o, Stefan—Boltzmann constant] e, emissivity of skin surface; t_, amblent temperatures; v,
velocity of metal-boundary motion due to oxidation; X, thickness of layer of material; a,
heat-transfer coefficient; p, molecular weight. Indices: j =1, j = 2, quantities relating
to metal and skin; n, number of grid points with respect to time; i and m, number of grid
points over the spatial coordinate in the metal layer and the skin,
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